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Note 

Integration of Highly Oscillatory Functions 

In this paper, we discuss the integration of highly oscillatory functions using (i) a new 
quadrature formula for evaluating integrals between two successive zeros of the integrand, 
and (ii) the iterated Aitken method for accelerating convergence in the case of an infinite 
interval when the integrand has an infinite number of zeros. 

1. INTRODUCTION 

The numerical integration of highly oscillatory functions f(x) on R is a problem 
which frequently occurs in mathematical physics. Few papers1 have been devoted to 
this question, except for integrals of the form If = J’rf(x) eiy5 dx [l-5]. 

We consider the integral If = J’E j(x) dx of a function f E P+*(a, b), with a finite 
but large number of zeros on the bounded interval (a, b) and with an infinite number 
of zeros in the case of an unbounded domain. The method of computation requires 
three steps. 

(a) determination of the roots of f(x) on (a, b), 

(b) computation of the integrals Iif = Jz:“f(x) dx between two successive zeros, 

(c) the third step is used only for an infinite interval (a, b) in order to accelerate 
the convergence of the series xi”_, lax The most original contribution of this paper is in 
the second step where PA is computed with a Gauss-Jacobi formula giving for the 
same number of points more precise results than the usual Gauss-Legendre formula. 
We first consider the case of a bounded interval. 

2. INTEGRATION OF A HIGHLY OSCILLATORY FUNCTION ON A BOUNDED INTERVAL 

2.1. Determination of the Roots of the Integrand 

Finding the roots off(x) = 0 on (a, b) is not a difficult problem, assuming that all 
the roots are simple. It is sufficient to divide (a, b) into subintervals of equal length 
h < !!-=t and to locate a root in each subinterval using the Newton-Raphson 

methods. If, for this particular value of h, only r among the s roots xi have been found, it 
is only necessary to start again with the function fi(x) = f(x)/l’$-, (x - xi), since 
the Newton-Raphson method requires 

1 A noticeable exception is [9, lo]. 
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However, good results can often be obtained without calculating all of the roots of 
f(x) on (a, b). 

2.2. Computation of Iif 

Let {xi} be the roots of f(x) on (a, b) and Iif = j’zy f(x) dx, 

zy = (x*+l - XJ s l f Lx* + t(x*+1 - $)I & f(x) E C2n+2(X* , x*+1). (1) 
0 

We first consider the following integral where g(x) may have roots on (0, 1). 

Jg = I’ x(1 - x) g(x) dx, g(x) E C2”(0, 1). (2) 
0 

It is known [6] that an approximation J,g of degree d = 2n - 1 (that is exact for all 
polynomials of degree d < 2n - 1) of J, is 

where torsra is a root of the Jacobi polynomial H,(x) such that 

s 

1 

x(1 - 4 fLC4 f4&4 dx = km , 
0 

6,, being the Kronecker symbol. It is also well known that the Jacobi polynomial of 
degree n has n distinct real zeros contained in the interval (0, 1). We have [7] 

H,(x) = N,x-I(1 - x)-l-g [xn+l(l - x>n+q, N, = [(n + I>@ + 2)(2n + 3)]“” 

The weights W,,, in (2’) are the Christoffel numbers defined by the relation 

wwa = qy w”(tA2. v=o 

Let us now come back to 1% if we put p(x) = x(1 - x), then comparison between (1) 
and (2) shows that (2’) leads to the following approximation &f of I*$ 

w= (Xi+1 - 4 i Gmf[& + c%&*+1 - x*)1, &,?l = Wa*,P-%,n), (1’) 
0=1 

but from (2’) and from the definition of p(x), it follows that in (l’), d = 2n + 1 
instead of d = 2n - 1 for the Gauss-Legendre formula for the same number of 
points. 

We wrote a program for computing ta,n , W,,, , G,.,, 01 = 1, 2 ,..., n, n < nmsx = 20 
but ta,, , W,,, can be found in [8]. 
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To be complete, we still have to compute, with the same degree d = 2n + 1 of 
approximation the two following integrals when f(a) # 0 and (or) f(b) # 0. 

Pf = s” f(x) dx. 
x* 

It is easy to prove that, if xi is not a zero of f(x), then instead of (1’) we have 

43 = (Xi+1 - Xi) &fW + f ~cmf[Xi + fiy,&i+1 - Xi)1 
U=l 1 9 

(1”) 
. 

Of course, there exists a similar expression with K,,f(xi+,) if f(xi+& # 0. The value of 
K, is obtained by computing the integral of a constant function on (0, 1). 

Collecting all these results, the approximation Idf of degree d = 2n + 1 of If is 

4if = &Kx, - 4fG-4 + @ - 4 f@)l 

+ agl %?z igo (Xi+1 - xdfh + L&i+1 - &)I, (3) 

where, in the last summation, we put x,, = a, x,+~ = b. 

2.3. Some Simple Formulas 

In some cases, quadrature formula (3) can lead to very lengthy computations and 
we consider here some different formulas with still good precision (but more difficult 
to estimate). 

The first possibility is based on the two following remarks. 

(1) In (2), as noted before, where g(x) may have roots on (0, 1). 

(2) The detlnition of the polynomials H,(x) implies that the roots tUPn occur in 
pairs symmetric with respect to the point x = Q and from (2), (2’) the symmetric 
pairs have the same weight W,,, and also the same modified weight 8,,, since p(x) is 
invariant under the transformation x --t 1 - x. As a consequence, if g(x) = g(l - x), 
then I,g - J, = 0 and formula (2’) is exact. 

This suggests halving of the work by using the subintervals (xi , xi+J instead of 
(xi , x~+~), and this gives, assuming that S is an even number, 

bf = K,Kx, - 4fW + @ - x,)f(b)l + iFo CG+B - ~df[~zi + twdx,i+, - xzdl. 

(4) 

It is trivial to write the corresponding expression for an odd number S. This approxi- 
mation shows that valid results can be computed using only a subset of {xi}. 
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An interesting approach, when f(x) is not a smooth function, is to divide every 
interval (xi , xi+3 into 1 equal subintervals applying in each of these 1 subintervals 
a very simple formula with only one or two points. For instance, using only one point, 
since 1,,, = 4 and C& = Q, we have for I*;fwith h = (x~+~ - xi) I-l, 

Of course, one can use a mixture of (4) and (5). 

3. INTEGRATION OF A HIGHLY OSCILLATORY FUNCTION ON AN INFINITE INTERVAL 

Let us first assume that the series cf, Zif is convergent to I$ Since CL, Iif is an 
alternating series, one knows at once the maximum error made by using the partial sum 
S, = Cz, Iy If, for E given, m is not too large, that is, if the series CL,, I$fconverges 
rapidly, we are, like in the case of a bounded interval, 

(i) to look for the first (in an increasing order) k zeros, 

(ii) to compute Itfusing the quadrature formulas (I’), (l”), or perhaps (4), (5). 

Then relation (3) gives the approximation I& of $ 
If the series Cy-,, Iifdoes not converge rapidly enough to obtain a practical value of 

m for a given error E, we have to use some accelerating tools. We made a thorough 
numerical study of the E-algorithm, Euler’s method, Pade approximants, and the iter- 
ated Aitken method. We experimentally found that this last method was the best 
suited to this particular problem and the reason why was discussed by the first author 
Vll. 

The iterated Aitken method is as follows: Let {S,> be the sequence of the partial 
sums S, = CE,, I”;f; then the sequence { Tm,k} obtained after k iterations of the Aitken 
method is defined by the relations 

T = Sm 3 Tm,k+l = 
A Tm,,Tm,~.k - A Tm+~.Jm.k 

rn.0 - AT 
m.k - ATm+,.k ’ 

k, m = 0, 1, 2 ,..., 

AT,,, = Tw1.k - Tm,k - 

(6) 

Broadly speaking, the iterated Aitken method runs succesfully as long as, for k fixed, 
{Tmsk} is an oscillatory sequence [ll]. 

Notice that if the first m partial sums S, are known, the maximum number of itera- 
tions is K = [(m - 1)/2] (where [(m - 1)/2] means the integer part of (m - 1)/2). 
From a practical point of view, in order to avoid a small denominator in (6) and since 
the convergence of the iterated Aitken method is very fast, the value of K is 3 or 4, so 
m is less than 10 (see Example 3). 

We can even assume that the series C,” Iydoes not converge and we conjecture the 
following result. 
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(i) if, for K fixed, K = 1, 2, 3 ,..., the sequences {T7n,k} are oscillatory, 

(ii) if If exists in some sense, 

then Tm,k converges to If. 
An example borrowed from [l] (the authors used the transformation due to Shanks, 

the simplest and most commonly used of these being equivalent to the iterated Aitken 
method) and discussed in the following section supports that conjecture. 

4. NUMERICAL EXAMPLES 

In this section we give four examples to illustrate the previous theory. In all these 
examples, 

(i) the integrals Iybetween two successive zeros are computed with the quadra- 
ture formula (1’); 

(ii) h denotes the stepsize used to locate the zeros of the integrand while II denotes 
the maximum number of points (roots of the Jacobi polynomials) used in the computa- 
tion of Iif; 

(iii) The Newton-Raphson method was used to find the zeros of the integrand. 

EXAMPLE 1. 

IP = 1’ J,(d) .I&lt) dt = ( x /( d - B3)w,-1(m J,(d - aJ,-,(d J&w> 
0 (7) 

where J,(X) denotes the usual Bessel function. 

(1) For d = 2, /3 = 5, p = 3, x = 1, with h = l/200, n = 10, the quadrature 
formula (3) gave 

IdJ2 = 1.028299 x 10-2. 

Exactly the same result is obtained with the right-hand side of (7). 

(2) For 01 = 10, fi = 20, p = 3, x = 1, the following table gives for different 
values of IZ the errors l 1 , c2 , with 

E = ] exact value - computed value / = j -2.154011972 x 1O-4 - computed value /. 

When using respectively, the quadrature formulas (3) and (4). 

n El E2 

5 0.9 x lo-’ 0.2 x 10-4 
10 0.5 x 10-13 0.25 x 1O-6 
15 0.4 x 10-13 0.1 x 10-6 
20 0.9 x IO-14 0.7 x 10-7 
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(3) For OL = 20, fi = 30, p = 2, x = 1, the following table give the errors .Q , l s , 
as in the previous case. The integrand has 14 zeros and the exact value of IJB is 
-9.327174830 x IO-*. 

n El c2 

5 0.3 x 10-7 0.6 x 1O-5 
10 0.7 x 10-s 0.15 x 10-S 
15 0.9 x 10-e 0.7 x 10-e 
20 0.6 x lo-* 0.4 x 10-B 

As a conclusion, theses results show that for the same number of function evaluations, 
it is better to use the quadrature formula (3) with n than (4) with 2n. 

EXAMPLE 2. 

IJ=I* WI + 1K9 
0 

x~-~J,(~ dx = ~q--p~9-*-1 rep _ ccq _ 1j,2jj , -I < q < zp + lis) 

For p = 3, q = 4, LY = 1, the exact value is IJ = 3. Using the quadrature formula (3) 
with n = 10 and the iterated Aitken method (formula (6)) for K = 3 iterations, we 
obtained: Tfs, J = 3.000022. 

EXAMPLE 3. 

Jf=ja x2 sin 100x2 dx, 
0 

which converges in the Abel sense to Zf = 3.1332853 x lo-*. 
We considered the iterated Aitken method for different values of n and k (the number 

of iterations); it appears that, probably due to roundoff errors, there exists for every n, 
an optimum k, so that for k < k, , the error E decreases, regularly when k increases, 
while, for k > k, , E has an erratic behavior. The following table gives the value of 
k, for some n. 

n ko E 

5 8 7 - 10-W 
10 6 3 * 10-14 
15 7 3 * 10-14 
20 8 5 * 10-14 

These results show and this conclusion has been strengthened by some other compu- 
tations, that, from a practical point of view, the best value of k is about 6 with n 
between 5 and 10. 

EXAMPLE 4. In this last set of examples, we consider integrals of the type If = 
J:~(x) etM dx. Of course, one can expect that the method of this paper is inferior 

581/23/r-6 
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to procedures which take the oscillatory nature of the integrand explicitly into account. 
To check this point, we made a comparison with some computations by Piessens and 
Poleunis [12], especially with respect to the Piessens-Gaussian rule (which is less 
effective than the other procedure described in [12]). 

The following table concerning the integral Jr x cos x sin mx dx (Table I) gives for 
some values of m the errors E, in the first column according to [12], and in the other 
two columns according to the method described in this paper. In the second column, 
the number of function evaluations (number between brackets) is the same as for the 
Gauss rule while in the third column, IE is such that E is almost the same. In both cases, 
the values of n used in the computations are given. 

TABLE I 

Errors 

m Gauss rule [12] 

1 2 * 10-16 (12) 

2 1 . IO-l5 (16) 

4 3 * lo-l5 (24) 

16 7 - lo-l6 (64) 

64 7 . lo-l6 (256) 

256 2. 10-13 (512) 

This paper (1) This paper (2) 

1 * 10-16 (12) n = 10 1 * 15-15 (12) n = 10 

1 * lo-“’ (16) n = 6 1 . lo-l4 (24) n = 10 

5 . 10-7 (24) n = 4 2 . 10-15 (40) n = 8 

4 - 1O-S (64) n = 2 2 * 10-16 (144) n = 7 

9 * 15-4 (256) n = 2 3 * 1O-‘B (1576) n = 7 

7. 1O-12 (1792) n = 5 

The two following tables (Tables IIA and B), concerning the integrals 

4 = j+ozp (1 - x;LjaP)l,P sin mx dx, z,= 2n 
s log x sin mx dx, 

0 

give the errors E for the Piessens-Gauss rule and for the present method with n = 10. 

TABLE IIA 

Errors in I1 

This paper 
in Gauss rule [12] n = 10 

1 1 * lo-* (18) 1.5 * 10-8 (20) 

2 5 * 1O-3 (36) 1 *10-a (40) 

4 4 * 1O-s (72) 8 * lO+ (80) 

10 3 . lo-* (186) 5 . 10-a (200) 

20 2 * 1O-s (360) 3 - 10-S (400) 

30 2 * 10-a (540) 2.10-8 (600) 
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TABLE IIB 

Errors in la 

m Gauss rule [12] 

1 1 * 10-4 (18) 

2 8 * 1O-5 (36) 

4 4 * 1O-6 (72) 

10 1 * 10-b (180) 

20 7 * 10-O (360) 

30 5 * 10-e (540) 

This paper 
n = 10 

3 . 10-A (20) 

1 * 10-d (40) 

6 * 1O-5 (80) 
3 *10-s (260) 
1 . 10-c (400) 

1 . 1O-5 (600) 

As previously, the numbers between brackets give the number of function evaluations. 
For the last two integrals, results by both methods are similar. In conclusion, it appears 
that the present method is more useful for nontrigonometric applications. 
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